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Abstract

The seasonal dependence of atmospheric short-term climate (i.e. seasonal to in-

terannual) predictability is studied. This is accomplished by analyzing the output

from ensemble integrations of the European Center for Medium Range Weather Fore-

cast Model. The integrations use the observed evolution of sea surface temperature

(SST) as prescribed boundary forcing. Forced by the interannual variation of SST,

the short-term climate predictability of the atmospheric circulation is geographically

and seasonally dependent. In general, the predictability is larger in tropics than ex-

tratropics and is greater in the Pacific-Atlantic Ocean sector compared to the Indian

Ocean-Asian Monsoon region. Predictability is also higher in the winter hemisphere

than in the summer hemisphere. On average, the weakest predictability in the North-

ern Hemisphere occurs during the northern autumn. However, it is noted that the

1982/83 strong El Niño event produced stronger atmospheric predictability than the

1988/89 strong La Niña event during the northern spring, and the predictability

pattern is reversed during the northern autumn.

Predictability is further partitioned into its internal and external components.

The external component is defined as the interannual variation of ensemble average

and the internal component is the sample-to-sample variance. The temporal and

spatial structure in the external variability accounts for most of the structure in

the SST forced atmospheric predictability. However, there are regions in the tropics

such as over the monsoon region where the external and internal variabilities show

roughly the same magnitude. Overall, internal variability is largest in the extratropics.

Specifically, the internal variability is larger in the northern extratropics during the

northern autumn and larger in the southern extratropics during the northern spring.

In contrast, the external variability is smaller/larger in the northern extratropics

during the northern autumn/spring.
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It is concluded that major features of the SST forced atmospheric predictability

are determined by the external variability in the tropics. And, in the extratropics,

the predictability is determined by seasonal variations in both internal and external

variabilities. The weakest predictability that occurs in the northern extratropics

during the northern autumn is the result of a conjunction of local increase in internal

variability and decrease in external variability at the same time.

Furthermore, the external variability is controlled by seasonality in the forcing

over the tropical Pacific Ocean. The seasonality in the forcing over the tropical Pacific

Ocean is largely determined by the following two mechanisms (1) Annual-cycle/ENSO

interaction over the tropical Pacific Ocean; (2) Non-linear effects of hydrological pro-

cesses associated with the annual-cycle/ENSO interaction. And, it is interesting that

the annual-cycle/ENSO interaction can be summarized into a conceptual model that

shows some analogy to the quark model in nuclear physics.
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1. Introduction

Starting from the pioneering work by Richardson (1922), numerical models have

quickly become powerful tools to simulate and predict the evolution of the atmosphere

(e.g., Charney, 1949; Charney et al. 1950; von Neumann and Ritchmyer 1950; Char-

ney and Philips, 1953; Philips, 1959; Lorenz, 1960, Kurihara, 1965; Smagorinsky et

al. 1965; Kasahara and Washington, 1967; Shuman and Hovermale, 1968; Arakawa,

1972; among others). With these tools, skillful predictions of weather variations up to

6 days in advance was demonstrated during the 1960’s (e.g., Miyakoda et al. 1972),

and skillful predictions up to 10 days is evident now (e.g., Lorenz, 1982; Dalcher and

Kalnay, 1987; Palmer and Tibaldi, 1988; Chen, 1989; Schubert and Suarez, 1989;

Tracton et al., 1989; van den Dool, 1994; among others). The upper limit of the nu-

merical weather prediction is determined by sensitivity of model predictions to initial

conditions. And, the sensitivity exists inevitably because of the chaotic nature of the

atmosphere (e.g., Lorenz, 1963) which leads to rapid growth of small errors in the

initial conditions (e.g., Reynolds et al., 1994).

To assess the predictability of atmospheric variations for longer than 10 days, one

needs to include appropriate estimation of the predictability of boundary conditions

(e.g., Shukla 1981). In the remainder of this paper, we will evaluate the so-called

”potential” atmospheric seasonal predictability assuming ”perfect” SST prediction.

The atmospheric short-term climate (i.e. seasonal to interannual) predictability that

will be subsequently discussed is evaluated from ensemble climate simulations with

atmospheric general circulation model (AGCM) using prescribed variations of global

sea surface temperature (SST) for the 14-year period from 1979 to 1992.

The sensitivity to initial conditions in such climate simulations is different from

that in weather forecasts. This is because growth of initial error is not crucial in

short-term climate prediction as it is in weather forecasting. The study by Borges and
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Sardeshmukh (1995) suggested that in a free atmosphere without external (boundary)

forcing, a small perturbation can maintain its growth for less than 12 days. This seems

to be the upper limit for error growth in a free atmosphere. Therefore, reliability of a

seasonal prediction depends on whether the atmospheric response to boundary forcing

is large enough to overcome the maximum uncertainty arising from initial errors.

As a boundary forcing, SST variation in the tropical Pacific ocean is a source of

atmospheric short-term predictability because of the existence of El Niño-Southern

Oscillation (ENSO), a robust climate phenomenon over the tropical Pacific ocean that

generates global scale atmospheric impacts (e.g., Philander, 1990; Diaz and Markgraf,

2000). Figure 1 shows the standard deviation of the interannual variations of SST

for four seasons. The most remarkable feature in Figure 1 is the large interannual

SST variability in the eastern tropical Pacific ocean, which acts as a strong boundary

forcing to for atmospheric circulation. During the last few decades, there have been

significant advances in understanding ENSO. The development of a comprehensive

observation system, and the development of better statistical and numerical models

have made the prediction of ENSO more reliable (e.g., Webster and Palmer; 1997;

Wallace et al. 1998). Based on the success of the prediction of ENSO, researchers have

started to make experimental seasonal to interannual predictions for regions outside

the tropical Pacific region. In practice, seasonal to interannual predictions are often

made as two-tiered processes: prediction of SST anomalies followed by a prediction of

atmospheric response to those SST anomalies (e.g., Anderson et al. 1999). As such,

the issue of predictability of short-term climate variation can be considered as two

related sub-issues: the predictability of the seasonal to interannual variations in SST;

and the predictability of atmospheric circulation in the presence of SST forcing. The

atmospheric predictability we examine in this paper is based on the boundary forcing

of observed SST variations, and therefore represents only the ”potential” atmospheric
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predictability for the scenario of ”perfect” SST prediction.

It is well known that atmospheric predictability is generally larger in the tropics

than in the extratropics (Charney and Shukla, 1981; Palmer and Anderson, 1994).

This difference arises from the greater dependence on the lower boundary forcing in

the tropics compared to the extratropics. Charney and Shukla (1981) hypothesised

that this difference occurs because of the general lack of hydrodynamical instability

in the tropics compared to the extratropics. The growth of instabilities is so vigorous

at higher latitudes that the flow is essentially chaotic. However, there are regions

in the tropics that appear less predictable than others. To account for this, it has

been hypothesised (e.g. Palmer, 1994, Webster, et al 1998) that the monsoon re-

gion, for example, possesses instability modes that render the monsoon circulation

more chaotic than other regions of the tropics. The chaotic nature of some regions of

the globe means that the system is locally sensitive to initial conditions, even in the

tropics. Nonetheless, ENSO forced atmospheric predictability at seasonal to interan-

nual time-scales is affected by both initial and boundary conditions. By changing the

statistics of the Pacific-North-America (PNA) atmospheric circulation pattern (e.g.,

Horel and Wallace, 1981; Hoskins and Karoly, 1981), SST variations in the tropical

Pacific ocean may increase the short-term climate predictability of atmospheric varia-

tions outside the tropics. Being sensitive to both initial and boundary conditions is a

unique property of the SST forced atmospheric prediction at seasonal to interannual

time-scales.

Extratropical response to tropical forcing varies significantly from one season to

another. Many previous studies addressing the mechanism of tropical-extratropical

interactions have considered the Northern Hemisphere winter period because trop-

ical influences are much more significant at this time of year (e.g., Webster 1982;

Blackmon et al. 1983; Shukla and Wallace 1983; Lau 1985; among others). Recent
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studies indicate a further stratification in atmospheric predictability: in the northern

hemisphere, seasonal atmospheric predictability is generally larger during the spring

than the autumn (e.g. Brankovic, et al. 1994, 1997; Livezey, et al. 1997; Rowell 1998;

Kumar and Hoerling 1998).

It has also been noticed that season-to-season variations in atmospheric pre-

dictability during El Niño years are, in general, different from those found during La

Niña years. Chen and van den Dool (1997) concluded that “In the region covered by

the PNA pattern, a high level of predictability is seen from December to April during

El Niño years. During La Niña years the predictability drops to below normal from

November to March. The spring barrier in the atmospheric predictability is a distinct

phenomena for the La Niña phase of the ENSO cycle.”

This study attempts to determine the mechanisms that produce seasonality in

the SST forced atmospheric predictability. Data and methods are described in section

2. The seasonality of the SST forced atmospheric predictability is discussed in greater

detail in section 3. Mechanisms are discussed in section 4, and conclusions are given

in section 5.

2. Data and Methods

In this paper, we study the SST forced atmospheric predictability by analyz-

ing the output of AGCM ensemble seasonal forecasts and observed fields. The data

used are products of a European research project on seasonal to interannual fore-

casting, “PRediction Of climate Variations On Seasonal to interannual Time-scales

(PROVOST)”. The data are available on CD-ROM prepared by the European Center

for Medium Range Weather Forecasts (ECMWF, Becker 1997).

The ECMWF-AGCM is a T63L31 version with cycle-13r4 scheme of model
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physics. The model’s horizontal resolution is about 1.9◦ longitude by 1.9◦ latitude and

31 vertical layers. The model output consists of 59 ensembles of 120-day integrations

driven by the observed SST for the fifty-nine seasons during the period from January

1979 to December 1993. Each ensemble has nine members of 120-day integrations

forced by the same SST but commenced with different atmospheric initial conditions.

For example, for the 120-day ensemble of the December-March of 1992/93, individ-

ual members are generated identically using the same evolving SST of this season,

but begun from different initial conditions starting separately at 12Z 22 Nov., 12Z 23

Nov., ..., 12Z 30 Nov.. Ensemble simulations for each of the 59 seasons were generated

in the same way.

In addition to the PROVOST Project model output, ECMWF reanalysis data

are also available on the same CD-ROM. The reanalysis data set covers the 14-year

period from January 1979 to December 1992.

The original PROVOST data are available in the form of 10-day means. How-

ever, all the analyses presented in this paper are based on seasonal means of winter

(December- January-February or DJF), spring (March-April-May or MAM), summer

(June-July-August or JJA) , and autumn (September-October-November or SON).

Thus, a variable can be defined by Xs,y,n in which the subscript s = 1, 4 represents

season, y = 1979, 1993 represents year, and n = 1, 9 indicates which sample in the

ensemble the variable belongs to.

When analyzing prescribed SST AGCM simulations, we consider the SST as ex-

ternal forcing, and the AGCM as an open system which is influenced by that forcing.

And, we consider the sensitivity to external forcing as a measure of predictability,

whereas the sensitivity to atmospheric initial condition (internal dynamics) as a mea-

sure of uncertainty in predictions. We define external variability as the variability

forced by external forcing; and internal variability as the variability of the system
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due to its internal dynamics. Thus, forced predictability of the open system can be

measured by how the system’s external variability compares to its internal variability.

For a given season, the internal variability of an AGCM is measured by the

differences among sample integrations and defined as RI (see Table1):

RI =
1

Y

Y∑

y=1

σ2

y (1)

where Y = 14 is the number of years for which the model is integrated, and σ2
y is the

internal (i.e. sample-to-sample) variability of X in the y-th year given by

σ2

y =
1

N − 1

N∑

n=1

(Xy,n − [Xy])
2 (2)

and [Xy] is the ensemble mean of X in the y-th year,

[Xy] =
1

N

N∑

n=1

Xy,n (3)

where N = 9 is the total number of sample integrations in each ensemble. For a given

season, the subscript s is constant, and we therefore omit it for clarity.

External variability of an AGCM is measured by the interannual variability of

the ensemble mean and is defined as RE :

RE =
1

Y − 1

Y∑

y=1

([Xy] − [X])2 (4)

where [X] is the climatological mean of the ensemble mean,

[X] =
1

Y

Y∑

y=1

[Xy]. (5)

The SST-forced atmospheric predictability can be measured by the ratio of how

the AGCM’s external variability compares to its internal variability:
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r =
RE

RI

(6)

Since RI can be very small while RE is large over a region of strong SST forcing (e.g.

over the tropical Pacific Ocean), which may cause the ratio r to vary in a range as

wide as from 0 to ∞, it is convenient to introduce a normalized measure - the ratio

of external variability to the sum of external and internal variabilities:

R =
RE

RI + RE

=
r

1 + r
. (7)

R varies within the range from 0 to 1, and therefore provides a uniform measure of

predictability. R = 0 indicates no external variability (RE = 0), the system has no

predictability. When 0 < R < 0.5 (i.e. 0 < RE < RI), the system has, in general, low

potential predictability, but may exhibit high potential predictability for individual

cases of extreme external forcing. R > 0.5 (i.e. RE > RI) means that the influence

from external forcing is usually larger than internal variability and the system is

judged to have high potential predictability. And, R = 1, no internal variability

(RI = 0), the system is perfectly predictable - it responds deterministically to any

changes in external forcing. Note that the conversion between r and R is nonlinear:

when R > 0.5 a small increase in R means a much larger increase in the ratio r (Table

2).

However, R is only a measure of potential predictability of an AGCM. A large

value of R only means a small difference among each sample of ensemble forecasts

subjected to identical SST forcing. There is no assurance of simulated behavior in

nature since limited sampling does not permit construction of perfect analysis. Also,

it is necessary to note that R = 1 only means that an open system is as predictable

as its external forcing. One may further divide the interannual variability of external

forcing (SST) as VSST = VENSO + Vnoise, where VENSO represents the magnitude
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of ENSO, and Vnoise represents the magnitude of non-ENSO SST variabilities. The

predictability of the variation in SST due to ENSO may be measured by another

signal-to-noise ratio, rSST = VENSO/Vnoise (Trenberth, 1984). In the rest of this

paper we assume that the time-variation of SST is known (perfect prediction) and

focus on the SST forced atmospheric predictability (R).

For any season, the year-to-year variation in the SST-forced atmospheric pre-

dictability can be seen by estimating the signal-to-noise ratio for each year (y):

ry =
([Xy] − [X])2

σ2
y

(8)

Ry =
ry

1 + ry

(9)

3. Seasonality in the SST forced atmospheric predictability

3.1 Predictability (R)

The values of R for 850 mb and 200 mb zonal wind fields of the ECMWF-

AGCM are shown in Figure 2. Comparing with Figure 1, one may easily see that

in the tropics the large values of R are centered around the regions of large SST

variations. The predictability is greater over the tropical Pacific and Atlantic Oceans

than over the tropical Indian Ocean. In the extratropics, the spatial distribution

of large values of R has strong seasonal dependence. The predictability is larger in

the winter hemisphere (i.e. the Northern Hemisphere during DJF and the Southern

Hemisphere during JJA) than in the summer hemisphere. And, during the northern

fall (SON), the predictability is smallest in the Northern extratropics.
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Moreover, one may examine the temporal variation in the SST forced atmo-

spheric predictability using equation (9). Figure 3 shows the interannual variation in

the predictability factor (R) of the 200-mb zonal wind over the Pacific-America sec-

tion (120◦E-40◦W). In the northern extratropics (30◦N-90◦N), the predictability for

the northern fall is weak and has little interannual variation throughout the 14-year

period from 1979 to 1992. The predictability has larger interannual variation in the

tropics (30◦S-30◦N) and southern extratropics (90◦S-30◦S). However, on average over

the 14-year period, relative minimum predictabilities also occur during the northern

fall compared locally to other seasons in the tropics and southern extratropics of the

Pacific-America sector, although the predictabilities in the tropical and southern ex-

tratropical regions are still higher than their counter part in the northern PNA sector

in this season. (cf. Table 3).

Chen and van den Dool (1997) noticed that in the region covered by the PNA

pattern (20◦N-70◦N, 120◦-60◦W) the annual cycle of atmospheric predictability during

El Niño years is generally different from its counterpart during La Niña years. The

asymmetry between the annual cycle in the SST forced atmospheric predictability

during El Niño and that during La Niña years may also be seen in Figure 4, which

shows the season-to-season variation in the predictability factor (R) of the 200-mb

zonal wind over the Pacific-American section for the five seasons of a strong El Niño

event (from JJA, 1982 to JJA, 1983) and five seasons of a strong La Niña event

(from JJA, 1988 to JJA, 1989). A difference between the El Niño and La Niña

regarding the annual cycle in predictability appears in the tropics (30◦S-30◦N) and

southern extratropics (90◦S-30◦S). In these two regions, the predictability factor R

during the JJA and/or SON of the first year of the El Niño event is lower than the

R during the following DJF and MAM and the pattern is somewhat reversed for the

La Niña event. The differences between the predictability factors for MAM in the El

12



Niño and La Niña are larger than 2.3 standard deviation and statistically significant

at 95extratropics. In the northern extratropics (30◦N-90◦N), Figure 4 also shows

that the predictability in the JJA/DJF of the warm event is lower/higher than its

counterpart in the JJA/DJF of the cold event. However, we also notice that the

predictability is higher in DJF and MAM than in JJA and SON in the northern

extratropics during both the warm and cold events, which is an exception to the

opposite trends in the predictability in the warm and cold events as those appear in

the tropics and southern extratropics.

To understand the mechanisms that determine the SST forced atmospheric pre-

dictability, it is helpful to partition the predictability into its internal and external

components and examine each of them separately.

3.2 Internal Variability (RI) and External variability (RE)

The role of the internal and external variabilities (eqn. 1 and 2) in determination

of the SST forced atmospheric predictability may be seen by comparing their spatial

distribution with the pattern of the predictability. The spatial patterns of the internal

and external variabilities in the 200-mb zonal wind field are shown in Figure 5. It

is seen that magnitude of the internal variability in the 200-mb zonal wind field is

non-zero (larger than 1 m/s) almost everywhere in the entire globe (panels on left

side in Fig.5). Centers of maximum internal variability appear in the midlatitudes of

both hemispheres. The spatial pattern of the internal variability shows little season-

to-season change but the magnitude is slightly larger in the northern midlatitudes

during SON and DJF, and in the southern hemisphere during MAM and JJA. The

spatial pattern of the internal variability is quite different from the pattern of the

predictability factor R.
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On the other hand, the spatial pattern of the external variability (panels in

right side of Fig.5) shows is similar to the pattern of R (panels in right side in

Fig.2). All of the major features in the predictability pattern may find corresponding

parts in the spatial pattern of the external variability. For example, the seasonality

in the SST forced atmospheric planetary wave (e.g. Webster, 1982) is apparently

responsible for the similar pattern in the spatial distribution of the predictability

factor R. Recall from Figure 4 that the El Niño/La Niña signal had strong seasonal

variation with the potential predictability weaker in JJA and SON than in DJF

and MAM in the northern extratropics, but the potential predictability is higher in

JJA/SON than DJF/SON in the tropics and the southern extratropics during the

cold event. Figure 5 explicitly shows that the northern extratropical exception is

attributed to the seasonality in the SST forced planetary waves (Webster, 1982).

Therefore, the external variability (i.e. atmospheric response to the variation in SST)

is the major factor that contributes to the atmospheric predictability in seasonal to

interannual time-scale.

The contributions of the external and internal variabilities to the SST forced

atmospheric seasonal predictability are further illustrated in Figure 6 which shows

the zonal average of R, RE, and RI for the 850mb and 200mb zonal wind fields.

Again, the maxima in the tropics and the minima in the northern extratropics during

the northern fall are two remarkable features in the zonal average of R in both the

lower and upper troposphere (Fig.6, top two panels). The tropical maxima in the

predictability factor R may be attributed to the contributions from both the high

external and low internal variabilities. The annual migration of the maximum in

RE in the lower troposphere shows that the largest external variability occurs in the

inter-tropical convection zone (ITCZ), and the seasonal predictability is linked to SST

forcing via the interannual variation of precipitation inside ITCZ. The maxima of the
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internal variability RI (Fig.6, bottom panels) in the midlatitudes contribute to a

decrease in the predictability in the extratropical zone. The fall (SON) minima of the

predictability in the northern extratropics may also be attributed to the weakening of

external variability because the season-to-season variation in the predictability factor

R follows the pattern of variation in the external variability RE .

Quantitative comparison among the seasonal variations in RI , RE , and R of the

200mb zonal wind over the Pacific-America section (120◦E-40◦W) is given in Table

3. In the tropics(30◦S-30◦N), a minimum R of 0.38 occurs during SON due to the

fact that RE is a minima then. In the tropics, the season-to-season variation in the

internal variability RI is much smaller compared to its counterpart in the external

variability RE . In the northern extratropics (30◦N-90◦N), RE has a same value of 0.31

during both JJA and SON which are lower than the 0.53 found during DJF and the

0.40 during MAM. In the northern extratropics, R becomes minimum during autumn

because the value of RI during SON, 0.95, is much higher than the RI during JJA,

0.81. Similarly, in the southern extratropics (30◦S-90◦S), the RE has the lowest value

of 0.37 during both SON and DJF and the SON minimum R is the result of a larger

RI , 0.91 during SON than the RI of 0.77 during DJF. Therefore, the SON weakening

in R is mainly caused by weakening in external variability in the tropics. And, in

the extratropics, the SON weakening in R is due to both the decrease in external

variability and increase in internal variability during this season.

4. Why does the predictability differ between El Niño and La Niña ?

As shown in the above section (Fig.4), it appears that the SST forced atmospheric

predictabilities are larger for the northern spring (MAM) than fall (SON) during an El

Niño year, and the pattern is reversed in the tropics and southern extratropics during

a year of La Niña. Such asymmetry between the seasonalities of the SST forced
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atmospheric predictability during El Niño and La Niña years may be a manifestation

of the seasonality in the external forcing of the tropical Pacific SST because it can be

mostly explained by the mechanisms that determine the strength of SST forcing in

the tropical Pacific ocean and its atmospheric response.

4.1 The annual cycle and ENSO anomalies

It is helpful to introduce the definition of the annual cycle anomaly and ENSO

anomaly. For some variable X, the seasonal mean value for the season s of year y

can be written as:

Xs,y = Xs + X
′

s,y + noise

where X
′

s,y is the anomaly of interannual variation due to ENSO and abbreviated as

ENSO anomaly. Variations due to other causes such as the variabilities of intrasea-

sonal and/or other time-scales, model’s sensitivity to initial condition, and model

errors are considered as noise here. Xs represents the climatological mean for season

s written as:

Xs =
1

14
(

14∑

y=1

Xs,y)

Xs can be further written as:

Xs = X + X
′

s

where

X =
1

4
(

4∑

s=1

Xs) =
1

56
(

14∑

y=1

4∑

s=1

Xs,y),

is a constant representing the annual average of the climatological means of each

season (Xs), and X
′

s = Xs−X is the anomaly due to the climatological mean annual
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cycle and abbreviated as annual cycle anomaly. Thus, the seasonal mean of a variable,

Xs,y, can be expressed as the sum of the long-term climatological mean (X) and the

annual cycle anomaly (X
′

s) plus the ENSO anomaly (X
′

s,y) plus noise:

Xs,y = X + X
′

s + X
′

s,y + noise (10)

We choose to use SST, the meridional component of surface wind, and precipi-

tation for the analysis in this section because the three variables represent three key

aspects of the air-sea interaction over the tropical Pacific ocean: boundary forcing,

local dynamic response (convergence/divergence), and local thermodynamic response

(diabatic heating) in the atmosphere. The spatial pattern of the annual cycle anoma-

lies (X
′

s) of the SST and the meridional component of surface wind are shown in

Fig. 7. In the tropical Pacific, the SST has a strong annual cycle (left panels in

Fig.7). Regulated by the annual cycle in solar radiation, the SST is warmer in the

Niño-1 (10◦S-5◦S,90◦W-80◦W) and Niño-2 (5◦S-0◦,90◦W-80◦W) region during DJF.

A warm SST extends westward further into the region of Niño-3 (5◦S-5◦N, 150◦W-

90◦W) during MAM, which makes the east-west gradient of SST the weakest of the

annual cycle. The weak zonal boreal spring gradient of SST reduces the intensity of

the Walker circulation. Webster (1995) has hypothesised that this reduction in the

intensity of the Walker Circulation is an important factor that causes the predictabil-

ity barrier of the coupled ocean-atmosphere system in the boreal spring. Cold SST is

seen in the region of Niño-1 and 2 during JJA and extends westward into the Niño-3

region during SON.

Accompanying the annual cycle in SST in the eastern tropical Pacific, the po-

sition of the intertropical convergence zone (ITCZ) migrates meridionally about the

equator. Coupled with such ITCZ shifts, the meridional wind over the region of

Niño-3 undergoes significant change. During SON, the meridional wind contributes
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to divergence over the Niño-3 region where the SST has maximum interannual vari-

ability (panels in right side in Fig.7). In contrast, during MAM, the surface meridional

wind contributes to convergence over the Niño-3 region.

4.2 The interaction between the annual cycle and ENSO

Irrespective of the phase of ENSO, the annual cycle of the coupled ocean-

atmospheric system predominates, driven by the annual migration of solar radiation.

On the other hand, ENSO is basically driven by coupled ocean-atmosphere dynamic

mechanisms in the tropical Pacific. Once an El Niño or La Niña anomaly starts to de-

velop, it may be sustained for about a year. In this sense, the annual cycle and ENSO

can be considered as two independent processes that take place simultaneously in the

eastern tropical Pacific 1. To first order, the magnitude of external atmospheric forc-

ing is determined by the phase relationship between the annual cycle and the ENSO

anomalies.

To see how the annual cycle interacts with ENSO, we examine the temporal

variations in SST and atmospheric circulation over the eastern tropical Pacific ocean

(5◦S- 5◦N, 160◦W-90◦W). Figure 8 shows the time series of regional averages of the

SST, precipitation and horizontal convergence in the surface meridional wind over

this region. The convergence in the surface meridional wind is represented by the

difference obtained by subtracting the spatial average of the wind over the southern

part (0-5◦S) from the average over the northern part (0-5◦N) of the region. The

time-series covers the period from January 1979 to December 1992. Seasonal means

were made for the seasons of DJF, MAM, JJA, and SON for each year. Using the

1One explanation for the dynamic mechanism is the “delayed oscillator” (e.g., Batisti and Hirst,

1989). It has also been suggested that ENSO is the exaggeration of the seasonal cycle (e.g. Philander,

1990; Chang, et al. 1995).
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seasonal means, we filtered out temporal variations of shorter time-scales and focus

on the annual cycle and interannual variation.

The annual cycle anomalies X
′

s = Xs −X of SST, precipitation, and meridional

wind convergence are shown in panels at the right-hand side in Figure 8. Driven

by the annual cycle of solar radiation, the SST, precipitation, and meridional wind

convergence have a consistent annual cycle. The annual cycle anomalies of all these

components in the coupled system reach a maximum positive value during MAM and

a maximum negative value during SON. It is important to keep in mind that the

annual cycle in the eastern tropical Pacific Ocean reaches opposite maxima during

the two equinox seasons. This is a major factor that makes the seasonality of the

SST forced predictability during La Niña years differ from during El Niño years.

The interannual variations in the SST, precipitation, and meridional wind con-

vergence in the eastern tropical Pacific ocean are further examined in Figure 9 which

shows the time series of the ENSO anomalies X
′

s,y (cf. eqn.10). Based on the time

series of the ENSO anomalies in the SST, the interannual variation in the eastern

tropical Pacific Ocean during the period from 1979 to 1992 can be roughly divided

into three warm events (DJF 1981/82 to SON 1983; DJF 1985/86 to SON 1987; and

DJF 1990/91 to SON 1992) and three cold events (DJF 1979/80 to SON 1981; DJF

1983/84 to SON 1985; and DJF 1987/88 to SON 1989). Composite El Niño (La Niña)

anomalies can be obtained by averaging the ENSO anomalies of the three warm (cold)

events for each season:

[X
′

s]ElNiño =
∑

y=ElNiño

X
′

s,y

[X
′

s]LaNiña =
∑

y=LaNiña

X
′

s,y

The composite ENSO anomalies of the three warm events and three cold events are
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also shown in Figure 9 (right panels). The SST, precipitation, and the meridional wind

convergence have positive anomalies during El Niño years and negative anomalies

during La Niña years. Notice that the largest ENSO precipitation anomaly occurs

during MAM and the smallest ENSO anomaly of precipitation occurs during SON.

This feature is attributed to the phasing with annual cycle which itself has maximum

precipitation during MAM and minimum precipitation during SON over the eastern

tropical Pacific ocean.

The interaction between the annual cycle and ENSO is illustrated further in

Figure 10 and 11. Figure 10 compares the annual cycle anomalies (X
′

s) and the

composite ENSO anomalies for El Niño years ([X
′

s]ElNiño). An annual cycle anomalies

are indicated by the left-side bars, the composite ENSO anomalies are indicated by

the right-side bars. During DJF and MAM the annual cycle anomalies and the El

Niño anomalies are of the same sign except for the SST during DJF. In contrast,

during JJA and SON the annual cycle anomalies are of opposite sign to the El Niño

anomalies. Therefore the annual cycle and the El Niño enhance each other during

DJF and MAM but weaken each other during JJA and SON. Figure 11 compares

the annual cycle anomalies (X
′

s) and the composite La Niña anomalies ([X
′

s]LaNiña).

Annual cycle and La Niña anomalies interfere each other during DJF and MAM,

but enhance each other during JJA and SON. Figures 10 and 11 thus suggest one

explanation for why El Niño increases atmospheric predictability during northern

spring, while La Niña increases predictability during the northern autumn. For the

same reason, one would expect to see the SST forced atmospheric predictability to

be decreased during the autumn of El Niño years, and the spring of La Niña years.

4.3 The concept of “ENSO-quark”, a useful paradigm for annual-cycle/ENSO inter-

action
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Interestingly, the interaction between the annual cycle and the interannual vari-

ability of the ENSO can be represented by a schematic plot that mimics the concept

of the “quark” model that is widely used in nuclear physics to explain the structure

of nucleons and related phenomena. The schematic plot is shown in Figure 12. The

interaction between the annual cycle and El Niño is represented by the ovals and

arrows in the left column. The ovals are used to indicate anomalies of the SST with

light-shades for annual cycle and heavy-shades for ENSO, and shaded ovals indicat-

ing warm while hatched ovals indicating cold SST anomalies. The vertical arrows

represent anomalies of precipitation, dashed bar being used for annual cycle and solid

bar for ENSO. An upward-pointing arrow represent an increase in precipitation while

downward-pointing arrow, a decrease in precipitation. And, the horizontal arrows

represent anomalies in horizontal convergence in the surface meridional wind, a blank

head for annual cycle while a filled head for ENSO, and the arrows pointing toward

each other indicating anomalous convergence while the arrows pointing away from

each other indicating anomalous divergence. In brief, enhancement between the an-

nual cycle and El Niño is indicated by arrows pointing to the same direction and by

ovals of the same type of shading. On the other hand, the weakening between the

annual cycle and El Niño is indicated by the opposite directions of the arrows and

different types of shading in the ovals. In the same manner, the interaction between

the annual cycle and La Niña is represented by the ovals and arrows in the right

column in Figure 12.

Now, if one imagines each oval and associated arrows to represent a quark

(the oval representing its spin and the arrow representing its polarity) the annual-

cycle/ENSO interaction can be interpreted using the term “A-quark” to describe the

state of annual cycle anomalies in the SST, precipitation, and meridional wind con-

vergence; and “E-quark” to describe the state of the corresponding ENSO anomalies.
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Using the quark analogy, the statement “El Niño signal is enhanced when the annual

cycle anomalies of SST, precipitation, and meridional wind convergence are of the

same sign as the ENSO anomalies” can be restated as: signal of an El Niño or La

Niña is enhanced when the polarities of the E-quark and A-quark are the same.

4.4 Nonlinearity in the annual-cycle/ENSO interaction

It is worth noting that the effect of the annual-cycle/ENSO interaction is non-

linear. The nonlinearity is reflected in two phenomena: (1) the annual-cycle/ENSO

interaction has larger impact on the SST forced atmospheric predictability during

MAM than SON. For example, the predictability factor R for the MAM of 1983 is

much larger than the R for MAM of 1989 in the tropical Pacific-America region (Fig.

4), and the difference between the R values for the two fall (SON) seasons of 1982 and

1988 is very small. (2) The SST forced atmospheric predictability is generally weaker

during the northern fall compared to other seasons (cf. Table 3). In the above section,

we have elucidated that the reduction of the SST forced atmospheric predictability is

mainly attributed to the weakening of the external variability. The fall weakening of

the external variability can not be explained by the seasonality in the SST variability

itself because the weakest interannual variability in the tropical Pacific SST occurs in

the northern spring (e.g. Rasmusson and Carpenter, 1982; Chen and van den Dool,

1997; and Fig.1 in this paper). An appropriate explanation for the two phenomena

can be found in the nonlinear regulation of water vapor condensation by the annual

cycle in SST over the tropical Pacific ocean. We have noticed that the SST is lowest

in the eastern-central tropical Pacific during the northern fall due to annual cycle, and

highest during the north spring (Fig.7 & 8). According to the Clausius-Clapeyron

relation (e.g., Iribarne and Godson, 1981), the same amount of change in tempera-

ture ∆T may cause much larger changes in evaporation or condensation in a warmer
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environment than it does in a colder environment, i.e., ∆e
∆T

|T1
� ∆e

∆T
|T2

, when T1 < T2.

This nonlinearity can be seen in Figure 9: the composite precipitation anomalies for

the El Niño/La Niña events is smallest/largest during the northern fall/spring when

the SST annual cycle reaches lowest/highest point, although the corresponding com-

posite anomalies of the SST and surface wind show much smaller differences. Since

the external forcing from SST is actually realized by the latent heat release during

the process of water vapor condensation, and precipitation in the atmosphere, the

magnitude of anomalous precipitation represents better the real external forcing by

the atmospheric system. Therefore, one would expect to see that the warm El Niño

SST anomalies induce larger external forcing to the atmosphere during the north-

ern spring than fall, and the interannual variation in SST has weakest atmospheric

response during the northern fall.

4.5 Seasonality in the effect of annual-cycle/ENSO interaction

One may notice that the El Niño-forced and La Niña forced atmospheric pre-

dictabilities has largest difference over the tropical Pacific during MAM (Fig.4). On

the other hand, the the SST forced atmospheric predictability is weakest over the

tropical Pacific during SON (table 3). The two phenomena reflects seasonality in the

interaction between the annual cycle and the ENSO. Figure 13 compares the interan-

nual variation of SST and precipitation for MAM and SON, JJA and DJF respectively.

One can see that the curves of interannual variation of SST and precipitation in MAM

are clearly separated from those of SON. The MAM-SON separation indicates that

the physical environment for an ENSO during MAM is quite different from that dur-

ing SON. During MAM/SON, the SST becomes warmest/coldest in a year and the

meridional wind convergence, and precipitation reaches annual maximum/minimum

over the tropical eastern Pacific (Fig.8). The physical environment during MAM/SON
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provides a favorable background condition for an El Niño to produce stronger/weaker

anomalies in the atmosphere and thus higher/lower predictability. Hence the effect of

the annual cycle/ENSO interaction becomes more apparent when the two equinoctial

seasons are compared. In contrast, the annual-cycle induced DJF-JJA differences in

the SST, meridional wind convergence, and precipitation are much smaller. That is,

the differences in background conditions for an El Niño anomalous event are smaller

when the DJF and JJA seasons are compared. Thus, the effect of the annual cy-

cle/ENSO interaction is less significant when the two solstice seasons are compared.

4.6 The El Niño/La Niña difference in the extratropical predictabilities

As we have discussed in section 3, the SST forced atmospheric predictability

has similar seasonality in the extratropics as that in the tropics (Fig. 4), because

the predictability in extratropics mainly comes from the response to the interannual

variation in tropical Pacific SST. However, in addition to the annual cycle/ENSO in-

teraction discussed above, the seasonality in atmospheric planetary waves is another

important factor that determines the atmospheric seasonal predictability in the ex-

tratropics. It is the seasonality in planetary waves that makes the annual variation

of the predictability in the northern extratropics very different from the tropics and

southern extratropics during the 1988/89 La Niña year (see also section 3.2). In ad-

dition, it is also worth to note that the nonlinear asymmetry between El Niño and

La Niña also exists in the teleconnections associated with them (e.g. Hoerling et al.

1997).

5. Conclusions

In this paper, an effort has been made to obtain a better understanding of the SST
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forced atmospheric short-term climate predictability. The term “short-term climate”

is used here to represent climate variation on seasonal-to-interannual time-scales.

Output from the ensemble seasonal forecasts of an ECMWF-AGCM has been

analyzed. By introducing a normalized signal-to-noise-ratio (R) to measure the

predictability we found the following features in the spatial structure and tempo-

ral evolution of the SST forced atmospheric short-term climate predictability: The

predictability is (i) greater in tropics than in extratropics; (ii) greater over the Pa-

cific and Atlantic than over the Indian Ocean and the Asian Monsoon region; and

(iii) greater in the winter hemisphere than in the summer hemisphere; (iv) The pre-

dictability is weakest during northern fall; and (v) The 1982/83 strong El Niño event

forced larger atmospheric predictability during the northern spring than fall while

the opposite occurred during the 1988/89 strong La Niña event, the same results as

found, for example, by Chen and van den Dool (1997).

The nature of the temporal and spatial structure in the SST forced atmospheric

short-term climate variability is explored further by partitioning the predictability

into its internal and external components. The basic assumption is that external

variability is determined by the prescribed forcing given by the evolving SST and the

internal variability represents the sensitivity to initial conditions. It is found that

the temporal and spatial variation in the predictability is mainly determined, in the

tropics, by the external variability, i.e., by SST forcing. In the extratropics, the vari-

ations in the predictability are determined by the variations of both the internal and

external variabilities. It is also found that the seasonality of the internal variability

differs from that of the external variability in the extratropics. The internal variabil-

ity is larger in the northern extratropics during the northern fall and larger in the

southern extratropics during the boreal spring. An opposite asymmetry between the

two equinox seasons is seen in the external variability. It is the conjunction of the
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increase in the internal variability and the decrease in the external variability that

makes the predictability particularly weak in the northern extratropics during the

boreal fall. Yet, why the seasonal variation in the internal variability differs from

that in the external variability in the extratropics is a new question remaining to be

solved.

An attempt is made to find mechanisms that determine the seasonality of the

SST forced atmospheric predictability. In this paper, we focus on the SST forcing

and the atmospheric external variability over the tropical Pacific Ocean. We found

it appropriate to use the annual-cycle/ENSO interaction over the tropical Pacific

Ocean to explain why stronger SST forced atmospheric predictability is observed in

the spring during El Niño years while stronger predictability occurs in the fall during

La Niña years. In the eastern tropical Pacific Ocean, the SST tends to be higher

during the spring but lower during the fall. Therefore, the forcing of warm SST

during an El Niño year is further enhanced by the annual cycle during the spring

but weakened during the autumn. In contrast, the forcing of cold SST during a La

Niña year is weakened during the spring but enhanced during autumn. A conceptual

model is introduced to help explain the annual-cycle/ENSO interaction. And, the

model shows some interesting analogy to the quark model in nuclear physics.

The weakest atmospheric predictability in the northern fall can be explained by

the nonlinearity of the hydrological processes associated with the annual-cycle/ENSO

interaction. Interannual variability of the precipitation (representing thermal forcing

in the atmosphere) over the tropical Pacific Ocean is weakest during the fall because

the SST is coldest compared to other seasons. Therefore, the signal of the external

forcing (atmospheric response to SST variation), and hence the SST forced atmo-

spheric predictability is the weakest during the northern fall. And, the seasonality in

atmospheric planetary waves is another factor that makes the SST forced atmospheric
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predictability particularly weak in the northern extratropics during the northern fall.

The above conclusions are drawn from the analysis based on ensemble simulations

of one atmospheric model. In this paper, we do not attempt to answer questions such

as whether the model’s internal variability is comparable to natural variability or

whether the model’s sensitivity to external forcing represents fully the sensitivity

of the atmospheric circulation in the real world ? However, consistency among the

results from this model (this paper) and other models (e.g. Chen and van den Dool

1997; Kumar and Hoerling 1998) suggests some generality of the conclusions presented

here.
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Table 1: Definition of RI and RE for a season

year = 1 year = 2 year = 3 ... year = y −→ time − mean

sample = 1 X1,1 X2,1 X3,1 ... Xy,1 −→ X1

sample = 2 X1,2 X2,2 X3,2 ... Xy,2 −→ X2

sample = 3 X1,3 X2,3 X3,3 ... Xy,3 −→ X3

. . . . ... . .

. . . . ... . .

. . . . ... . .

sample = n X1,n X2,n X3,n ... Xy,n −→ Xn

↓ ↓ ↓ ↓ ... ↓ ↓

ensemble − mean [X1] [X2] [X3] ... [Xy] −→ [X] → RE

↓ ↓ ↓ ↓

σ2
1

σ2
2

σ2
3

... σ2
y −→ RI
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Table 2: The predictability factor R and r

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r 0.1 0.2 0.4 0.7 1.0 1.5 2.3 4.0 9.0
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Table 3: Predictability factor R, RI , RE for the 200mb zonal wind over the Pacific-America

Region (120◦E-40◦W)

DJF MAM JJA SON

30◦N-90◦N

R 0.31 0.28 0.26 0.23

RI 0.96 0.85 0.81 0.95

RE 0.53 0.40 0.31 0.31

30◦S-30◦N

R 0.44 0.44 0.45 0.38

RI 0.73 0.68 0.74 0.72

RE 0.73 0.64 0.74 0.50

90◦S-30◦S

R 0.29 0.27 0.29 0.25

RI 0.77 0.95 1.07 0.91

RE 0.37 0.41 0.57 0.37
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Figure 1: Standard deviation of the interannual variations in SST. Contours start from 0.2

◦C with a contour interval of 0.2 ◦C. 37
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Figure 2: Potential predictability (R) of the 850- and 200-mb zonal wind defined using the

ECMWF-AGCM model result. Contours start from 0.4 with contour interval of 0.1.
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Figure 3: Potential predictability (R) of the 200-mb zonal wind defined using the ECMWF-

AGCM model result: Interannual variation of spatial mean over the Pacific-America section

(120◦E-40◦W).
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Figure 4: Potential predictability (R) of the 200-mb zonal wind defined using the ECMWF-

AGCM model result: Season-to-season variation of spatial mean over the Pacific-America

section (120◦E-40◦W).
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Figure 5: Internal (RI) and external variability (RE) of the 200-mb zonal wind defined

using the ECMWF-AGCM model result. Contours start from 1 m/s with contour interval

of 1 m/s.
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Figure 6: Zonal mean of the predictability factors: R, RI , and RE of the 850- and the

200-mb zonal wind defined using the ECMWF-AGCM model result.
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Figure 7: The annual-cycle anomalies of SST (left panels) and the meridional component

of surface wind (right panels). Contours start from 0 with contour interval of ±0.5◦C for

the SST and ±0.5 m/s for the surface wind.
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Figure 8: Time series of the seasonal means (Xs,y) of the spatial average of the SST,

precipitation, and the index of horizontal convergence of surface meridional wind over the

eastern tropical Pacific (5oS-5oN, 160oW-90oW). Climatological means for each variable are

shown in the right panels. The numbers 1 to 4 under the right panels indicate the seasons

of DJF, MAM, JJA, and SON.
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Figure 9: Seasonal mean anomalies due to interannual variation, X
′

s,y of SST (top), precip-

itation (middle), and horizontal convergence of surface meridional wind (bottom). Compos-

ite anomalies for El Niño and La Niña events are shown in the right panels. The numbers

1 to 4 under the right panels indicate the seasons of DJF, MAM, JJA, and SON.
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Figure 10: Comparison of the seasonal mean anomalies due to annual cycle, X
′

s and the

seasonal mean anomalies due to interannual variability [X
′

s]ElNiño averaged for the 3 El

Niño events.
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Figure 11: Comparison of the seasonal mean anomalies due to annual cycle, X
′

s and the

seasonal mean anomalies due to interannual variability [X
′

s]LaNiña averaged for the 3 La

Niña events.
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Figure 12: Schemetic chart illustrating modulation of annual cycle to interannual variation during
El Niño (left colum) andLa Niña (right column) events over the tropical Pacific ocean. Anoma-
lies due toEl Niño/La Niña are indicated by the heavily shaded/hatched ovals (SST) and solid
arrows (vertical motions and horizontal convergence in the lower tropospheric meridional
winds). Seasonal mean departures from the climatological annual mean are represented by the
lightly shaded/hatched ovals (SST) and the arrows with dashed bar (vertical motion) or empty
head (horizontal convergence in the meridional wind in the lower troposphere). The shading/
hatching is used to represent positive/negative SST departures in the tropical Pacific ocean (5ºS-
5ºN, 160ºW-90ºW).
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Figure 13: Time series of seasonal means (Xs,y) of SST and precipitation. The interannual

variations of the SST and precipitation are plotted for DJF and MAM by dotted lines and

for JJA and SON by solid lines.
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